Меню

Мышцы человека биология егэ

Мышечные ткани

Мышечные ткани составляют активную часть опорно-двигательного аппарата (пассивной частью являются кости.) Важнейшие функции мышечной ткани: сократимость и возбудимость. К данной группе тканей относятся гладкая, поперечно-полосатая (скелетная) и сердечная мышечные ткани.

Гладкая (висцеральная) мускулатура

Эта мышечная ткань встречается в стенках внутренних органах (кишечник, мочевой пузырь), в стенках сосудов, протоках желез. Эволюционно является наиболее древним видом мускулатуры.

Состоит из веретенообразных миоцитов – коротких одноядерных клеток. Слабо выражено межклеточное вещество, клетки сближены друг с другом: благодаря этому возбуждение, возникшее в одной клетке, волнообразно распространяется на все остальные клетки.

Гладкая мышечная ткань отличается своей способностью к длительному тоническому напряжению, что очень важно для работы внутренних органов (к примеру, мочевого пузыря), практически не утомляется. Скелетная мышечная ткань, которую мы изучим чуть позже, такой способностью не обладает и утомляется быстро.

Осуществляется сокращение с помощью клеточных органоидов – миофиламентов, которые расположены в клетке хаотично и не имеют такой упорядоченной структуры, как миофибриллы в скелетной мускулатуре (все познается в сравнении, уже скоро мы их изучим.)

Работа гладких мышц обеспечивается вегетативной (автономной) нервной системой: человек не может управлять ей произвольно. К примеру, невозможно по желанию сузить или расширить зрачок.

Скелетная поперечно-полосатая мускулатура

Скелетная ткань образует мышцы туловища, конечностей и головы.

В отличие от гладкой мускулатуры, скелетная образована не отдельными одноядерными клетками, а длинными многоядерными волокнами, имеющими до 100 и более ядер – миосимпластами. Миосимпласт представляет совокупность слившихся клеток, имеет длину от нескольких миллиметров до нескольких сантиметром.

Внутри миосимпласта находится саркоплазма, снаружи миосимпласт покрыт сарколеммой.

Характерная черта данной ткани – поперечная исчерченность, выражающаяся в равномерном чередовании светлых и темных полос на мышечном волокне. Это происходит потому, что границы саркомеров в соседних миофибриллах совпадают, вследствие чего все волокно приобретает поперечную исчерченность. Теперь самое время изучить микроскопическую основу мышцы – саркомер.

Саркомер

Сократимость мышечной ткани обусловлена наличием в клетках миофиламентов. Саркомер – элементарная сократительная единица мышцы. Состоит из тонкого белка – актина, и толстого – миозина. Сокращение осуществляется благодаря трению нитей актина о нити миозина, в результате чего саркомер укорачивается.

Источником энергии для сокращения служат молекулы АТФ. К тому же невозможно представить сокращение мышц без участия ионов кальция: именно они связываются с тропонином (белком между нитями актина), что обуславливает соединение актина и миозина. При сокращении мышц выделяется тепло.

Замечу, что трупное окоченение – посмертное затвердевание мышц – связано именно с ионами кальция, которые устремляются в область низкой концентрации (мышцы), способствуя связыванию актина и миозина. Мертвый организм не способен разорвать цикл, возникший в мышцах, в связи с чем наблюдается стойкая мышечная контрактура: конечности очень сложно разогнуть или согнуть.

Читайте также:  Мышцы тренируемые тренажером гребля

Вернемся к скелетным мышцам. Имеется еще ряд важных моментов, о которых нужно знать.

В процесс возбуждения вовлекается изолированно один миосимпласт, соседние волокна не возбуждают друг друга, в отличие от гладких миоцитов. Скелетные мышцы быстро утомляются и сокращаются мгновенно (у гладких мышц фазы сокращения и расслабления растянуты во времени.)

Скелетные мышцы поддаются нашему осознанному контролю, их скоращение регулируется произвольно. К примеру, по желанию мы можем изменить скорость движения руки, темп бега, силу прыжка. Мышцы покрыты фасцией, крепятся к костям сухожилиями, и, сокращаясь, приводят в движение суставы.

Сердечная мышечная ткань

Мышечная ткань сердца – миокард (от др.-греч. μῦς «мышца» + καρδία – «сердце») – средний слой сердца, составляющий основную часть его массы.

Этот тип мышечной ткани удивительным образом сочетает характеристики двух предыдущих, изученных нами, тканей (возбудимость, сократимость) и имеет одно новое уникальное свойство. Сердечная мышечная ткань состоит из одиночных клеток, имеющих поперечно-полосатую исчерченность.

В некоторых участках эти клетки смыкаются, образуя между собой контакты, благодаря которым возбуждение одной клетки волнообразно передается на соседние, таким образом, охватываются новые участки миокарда. Сокращается эта ткань непроизвольно, не утомляется.

Сердечная ткань обладает уникальным свойством – автоматизмом – способностью возбуждаться и сокращаться без влияний извне, самопроизвольно. Это легко можно подтвердить, изолировав сердце лягушки из организма в физиологический раствор: сокращения сердца в нем будут продолжаться еще несколько часов.

Автоматизм возможен благодаря наличию в миокарде особых пейсмекерных клеток, которые также называют водителями ритма. Они спонтанно генерируют нервные импульсы, которые охватывают весь миокард, в результате чего осуществляется сокращение. Именно благодаря водителям ритма сердце лягушки продолжает биться, будучи полностью отделенным от тела.

Ответ мышц на физическую нагрузку

Физические нагрузки приводят к гипертрофии мышц (от др.-греч. ὑπερ- «чрез, слишком» + τροφή – «еда, пища») – в них увеличивается количество мышечных волокон, объем мышечной массы нарастает.

В условиях гиподинамии (от греч. ὑπό — «под» и δύνᾰμις — «сила»), то есть пониженной активности, мышцы уменьшаются вплоть до полной атрофии. В худшем случае волокна мышечной ткани перерождаются в соединительную ткань, после чего пациент становится обездвиженным.

Необходимо отметить, что сердечная мышечная ткань также дает ответную реакцию на чрезмерную нагрузку: сердце увеличивается в размере, нарастает масса миокарда. Причиной могут быть генетические заболевания, повышенное артериальное давление. Гипертрофия сердца – состояние, требующее вмешательства врача и наблюдения за пациентом.

В большинстве случае гипертрофия сердца обратима, а у спортсменов наблюдается так называемая физиологическая гипертрофия (вариант нормы).

Происхождение мышц

Мышцы развиваются из среднего зародышевого листка – мезодермы.

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Читайте также:  Изолированное упражнение на верх грудных мышц

Мышцы человека биология егэ

Различают два вида мышц: поперечно-полосатые (скелетные и сердечная) и гладкие. Основная особенность мышечных клеток состоит в том, что они способны преобразовывать химическую энергию АТФ в механическую энергию сокращения.

Поперечно-полосатые мышцы выполняют в организме целый ряд функций: передвижение человека и частей его тела в пространстве; поддержание позы; дыхание; жевание и глотание; артикуляция и мимика; защита внутренних органов. Большая часть поперечнополосатых мышц прикреплена к костям скелета, их и называют скелетными. К скелетным мышцам относят мышцы головы, туловища, конечностей. Мускулатура у мужчин составляет 30-40% от массы тела. У тренированных людей этот показатель достигает 50%. В теле человека насчитывают около 400 мышц.

Скелетные мышцы прикреплены к костям сухожилиями. Большинство скелетных мышц обеспечивает движение какого-либо сустава. Они делятся на сгибатели и разгибатели сустава, на мышцы, приводящие и отводящие сустав, на вращатели сустава (внутрь и наружу). Обычно в любом движении сустава участвуют несколько групп мышц. Так как движение каждого сустава находится под контролем высших отделов нервной системы, работа всех групп мышц, обслуживающих какой-либо сустав, происходит согласованно. Так, если необходимо согнуть локтевой сустав, то двуглавая мышца сокращается, а разгибатель (трехглавая), соответственно, расслабляется, чтобы не мешать движению сустава. Если же двуглавая и трехглавая мышцы одновременно сократятся, развивая одинаковое усилие, то локтевой сустав зафиксируется в каком-то определенном положении.

Каждая мышца покрыта соединительнотканной оболочкой — фасцией, отделяющей ее от других мышц. Эти оболочки переходят в сухожилия, которые образованы очень прочными соединительнотканными оболочками, сросшимися с костью.

Поперечно-полосатые мышцы образованы длинными тонкими многоядерными клетками, которые называются мышечными волокнами. Поперечно-полосатые мышцы сокращаются произвольно, то есть по нашему желанию. Сокращаются мышцы рефлекторно, то есть под действием нервных импульсов из соответствующих отделов центральной нервной системы, приходящих по аксонам двигательных нейронов. Когда к мышечному волокну приходит нервный импульс, оно сокращается и укорачивается, а при сокращении многих волокон укорачивается и вся мышца.

Примером сгибательного рефлекса может служить коленный рефлекс. Рецепторы этого простейшего двигательного рефлекса лежат в сухожилиях мышц, и когда невропатолог ударяет молоточком по сухожилию, рецептор растяжения возбуждается и посылает нервные импульсы в спинной мозг. Тела этих нейронов находятся в специальных узлах, расположенных вдоль спинного мозга. По аксону чувствительного нейрона возбуждение (сигнал о том, что сухожилие растянуто) достигает двигательного нейрона, или мотонейрона. Тела мотонейронов расположены в передних рогах серого вещества спинного мозга. Мотонейрон возбуждается, по его аксону возбуждение достигает ноги, мышца возбуждается и сокращается.

Читайте также:  Электростимулятор мышц cefar peristim pro

Аксон мотонейрона ветвится в мышце и образует нервно- мышечные окончания (синапсы) на нескольких мышечных волокнах. Мотонейрон и те мышечные волокна, которыми этот мотонейрон управляет, вместе называются двигательной единицей. В глазных мышцах, где требуются очень тонкие движения, один мотонейрон управляет всего 2-5 мышечными волокнами, то есть двигательная единица очень маленькая. В икроножной мышце, которая не должна совершать очень тонких движений, двигательная единица включает до 1000 волокон.

На работу мышц тратится большое количество АТФ. Вот почему содержание этого вещества в мышцах заметно выше, чем в клетках большинства органов. Скелетные мышцы способны развивать значительные усилия. Так, одно мышечное волокно, сокращаясь, способно поднять груз весом до 200 миллиграммов.

Чем чаще сокращается какая-либо мышца и чем выше на нее нагрузка, тем быстрее развивается в ней утомление. Утомлением называется временное снижение работоспособности мышц. Причины утомления заключаются в том, что при работе в мышце накапливаются продукты обмена, препятствующие ее нормальному сокращению: молочная кислота, фосфорная кислота, калий и др. Кроме того, при длительной работе происходит утомление в тех отделах мозга, которые управляют движениями. Однако при кратковременном прекращении работы, то есть отдыхе, работоспособность мышц быстро восстанавливается, так как кровь удаляет из мышц вредные продукты обмена.

Поперечно-полосатые мышцы подразделяют на несколько групп: мышцы верхних и нижних конечностей, мышцы живота, мышцы груди, мышцы спины, мышцы шеи и головы. Мышцы головы подразделяют на жевательные и мимические.

Гладкие мышцы входят в состав стенок внутренних органов: желудка, кишечника, матки, мочевого пузыря и др., а также большинства кровеносных сосудов. Гладкие мышцы сокращаются медленно и непроизвольно. Гладкомышечные клетки имеют одно ядро и невелики, их длина не более 0,5 мм. Основой сократимости гладких мышц, так же как и поперечно-полосатых, является взаимодействие белков актина и миозина. Однако нити актина и миозина расположены в клетках гладких мышц не так упорядоченно, и скорость скольжения актина относительно миозина в 100 раз медленнее, чем в поперечнополосатых мышцах. Поэтому гладкие мышцы сокращаются медленно — в течение десятков секунд. Но благодаря этому тратится меньше АТФ, образуется меньше продуктов обмена и гладкие мышцы могут находиться в состоянии сокращения очень долго, утомление в них практически не развивается. Например, мышцы стенок артерий находятся в сокращенном состоянии всю жизнь человека. Клетки гладких мышц очень тесно прижаты друг к другу, и между ними образованы специальные контакты, через которые возбуждение свободно переходит с одной клетки на другую. Поэтому при возбуждении одной клетки может возбудиться вся гладкая мышца, и по ней пройдет волна сокращения. Это очень важно для нормальных движений стенок желудка и кишечника.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector